

Tetrahedron Letters 43 (2002) 5673-5676

Catalytic and selective conversion of (Z)-2-en-4-ynoic acids to either 2*H*-pyran-2-ones in the presence of ZnBr₂ or (Z)-5-alkylidenefuran-2(5*H*)-ones in the presence of Ag₂CO₃

Luigi Anastasia, Caiding Xu and Ei-ichi Negishi*

Herbert C. Brown Laboratories, Purdue University, West Lafayette, IN 47907, USA

Received 23 April 2002; accepted 4 June 2002

Abstract—Treatment of (Z)-5-alkyl-2-en-4-ynoic acids (1), prepared by the Pd-catalyzed alkynylzinc– β -haloacrylic acid coupling, with 5–10 mol% of ZnBr₂ can produce 6-alkyl-2*H*-pyran-2-ones (2) along with minor amounts of (Z)-5-alkylidenefuran-2(5*H*)-ones (3) in >90% combined yields, with often very high (\approx 95/5) pyranone/furanone ratios. On the other hand, lactonization of 1 catalyzed by Ag₂CO₃ provides a selective synthesis of (Z)-5-alkylidenefuran-2(5*H*)-ones (3) in >90% yields along with minor amounts (\leq 5%) of 2. © 2002 Published by Elsevier Science Ltd.

We report herein that treatment of 5-alkyl-2-en-4-ynoic acids (1) with 5–10 mol% of $ZnBr_2$ in THF can produce 6-alkyl-2*H*-pyran-2-ones (2) in high yields (Scheme 1). The pyranone/furanone ratio of approximately 95/5 have been observed with 1 containing n-hexyl, isobutyl, and cyclohexyl groups bonded to the C5 atom (entries 1–3 in Table 1). The use of DMF in place of THF in entry 3 lowered the 2/3 ratio to 67/33, although the combined yield was 91%. Cyclization of 1 to produce 2 in low yields $(\leq 21\%)$ along with the formation of (Z)-5-alkylidenefuran-2(5H)-ones (3) in 18–62% yields in the presence of a catalytic amount of AgI or Ag or 1 equiv. of HgO is known.¹ In the same publication, *o*-1-pentynylbenzoic acid was preferentially converted to 3-propylisocoumarin in good yields in the presence of catalytic amounts of AgClO₄, AgNO₃, AgOTf, or Ag₂CO₃. However, (Z)-2en-4-ynoic acids (1) have not previously been catalytically converted to 2 in high yields as the major products.

During our study reported herein, conversion of 1 to 2 in low selectivity (2/3 < 4) by iodolactonization with 3 equiv. each of I₂ and NaHCO₃^{2a} followed by consecutive treatment with Zn and HCl was reported.^{2b} As the results shown in Scheme 2 indicate, the current procedure is superior to that reported previously in that it is a ZnBr₂-catalyzed one-step reaction of higher product yields and higher selectivity.

We further report that the preparation of (*Z*)-5-organyl-2-en-4-ynoic acids by the Pd-catalyzed alkynylzinc– β haloacrylic acid coupling^{3–5} followed by lactonization catalyzed by Ag₂CO₃ provides a superior, albeit twostep, alternative to the recently developed one-pot alkyne-alkene coupling–lactonization tandem process^{6–8} run under Sonogashira coupling conditions⁹ for selective synthesis of (*Z*)-5-alkylidenefuran-2(5*H*)-ones (**3**) (Table 2).¹⁰

Scheme 1.

^{*} Corresponding author. Tel.: +1-754-494-5301; fax: +1-765-494-0239; e-mail: negishi@purdue.edu

^{0040-4039/02/\$ -} see front matter @ 2002 Published by Elsevier Science Ltd. PII: S0040-4039(02)01128-0

Table 1. Selective conversion of (Z)-2-en-4-ynoic acids to 2*H*-pyran-2-ones catalyzed by $ZnBr_2$ in THF

	COOH Znl	Br ₂ (5-10 m F, 23 °C	^{ol%)} ►		+	
Ŕ	1			2		3
entry	y alkyne	yield of 1	time (h)	2 : 3	combine based on 1	d yield (%) based on alkyne
1	n-Hex—	95	24	94:6	95	90
2	$\rangle =$	94	24	96:4	98	92
3		93	48	96:4	92	86
4	+=	92	72	66 : 34	93	86
5	Ph-==	94	72	50 : 50	94	88

Thus, in those cases where the R groups of the starting alkynes are *n*-Hex, *i*-Pr, cyclohexyl, *t*-Bu, and Ph, the overall yield of **3** are 82–88% over the two steps. These results favorably compare with the yield range of 46–74% for **3** observed in the one-pot tandem process. Furthermore, whereas the **3/2** ratio observed in the one-pot tandem process for those cases where the R groups are *n*-Hex, *i*-Pr, and cyclohexyl are only 2–4, those observed in the Ag-catalyzed lactonization are 19–22. These comparative results are summarized in Table 2. Some of the reported difficulties associated with the one-pot Pd-catalyzed cross-coupling-lactonization tandem process,^{6,7} such as alkyne dimerization and Michael-type addition reactions have not been observed in the two-step process.

Although *o*-alkynylbenzoic acids have been converted to dihydrobenzofuranone derivatives in high yields in the presence of Ag_2CO_3 , AgI, or Ag,¹ AgI-catalyzed conversion of 5-phenyl-2-penten-4-ynoic acid into the corresponding **3**¹ and AgNO₃-catalyzed synthesis of TBS-protected lissoclinolide¹⁰ are the only previously reported examples of the Ag-catalyzed high-yield conversion of **1** into **3**. In cases where R is alkyl, however, we find that $AgNO_3$ and a few of other Ag salts, such as AgOTf and AgBF₄, are unsatisfactory for selectively converting **1** into **3**. On the other hand, the use of Ag_2CO_3 or AgOAc, namely carbonate or carboxylate salts of Ag, leads to selective synthesis of **3** (Table 3).

On the basis of all of the findings presented above, it now appears reasonable to state that (i) the preparation of (Z)-2-en-4-ynoic acids (1) by the Pd-catalyzed cou-

Table 2. Comparison of Ag-catalyzed lactonization of (*Z*)-2-en-4-ynoic acids with Pd-catalyzed alkyne–alkene crosscoupling–lactonization tandem process

entry	alkyne	procedure ^a	2	:	3	yield o based on 1	f 2 + 3 (%) based on alkyne
1A	<i>n</i> -Hex—	Α	4	:	96	96	90
1B	"	в	34	:	66	b	77
2A 2B	<u> </u>	A B	5 20	:	95 80	99 b	93 75
за < 3В	"	A B	3 20	:	97 80	95 b	88 65
4A 4B		A B	2 3	:	98 97	95 b	86 76
5A	Ph-==	Α	2	:	98	94	88
5B	"	в		с		b	46 ^d

^aProcedure A: (1) Compound 1 was prepared under the cross-coupling conditions described in Ref. 11; (2) Ag₂CO₃ (5–10 mol%), DMF, 23°C, 1 h; Procedure B: CuI (5–10 mol%), Et₃N (4 equiv.), Pd(PPh₃)₄ (5 mol%), MeCN, 23°C, 12 h. ^bThe formation of compound 1 was never observed under conditions B. ^cRatio not determined. ^dRef. 6.

a: I₂ (3 eq), NaHCO₃ (3 eq), 65%; *b*: Zn; *c*: HCl, 88%.

Table 3. The effects of Ag catalysts and solvents in the Ag-catalyzed lactonization of (Z)-2-en-4-ynoic acids

entry	alkyne	catalyst	solvent	2: 3	combined yield (%) ^a
1	<i>n</i> -Hex—	Ag ₂ CO ₃	DMF	4:96	96
2	"	AgOAc	DMF	9:91	97
3	"	AgNO ₃	DMF	64 : 36	95
4	"	$AgNO_3$	MeOH	89:11	96
5	n	AgOTf	DMF	80:20	93
6	H	$AgBF_4$	DMF	88:12	93
7	<>>==	Ag ₂ CO ₃	DMF	3:97	95
8	н	AgOAc	MeCN	4:96	95
9	n	AgOAc	DMF	8:92	97
10	"	AgOAc	MeOH	9:91	92
11	"	AgNO ₃	MeOH	57:43	93
12	H	AgOTf	DMF	88:48	93

"Combined yield of 2 and 3 based on 1.

pling of alkynylzincs with (Z)- β -haloacrylic acids, (ii) the ZnBr₂-catalyzed cyclization of **1** to produce 2*H*-pyran-2-ones (**2**),¹¹ and (iii) the Ag₂CO₃-catalyzed cyclization of **1** to give (*Z*)-5-alkylidenefuran-2(5*H*)-ones (**3**),¹² all combine to provide an unprecedentedly

general and selective protocol for the synthesis of **2** and **3** from terminal alkynes and (*Z*)- β -haloacrylic acids (Scheme 1).^{13,14}

In our hands, Pd catalysts, such as Pd(PPh₃)₄, have not been effective in converting preformed and purified (*Z*)-2-en-4-ynoic acids into **2** and/or **3**. Only a very slow cyclization to give **2** and **3**, which can take place at comparable rates even in the absence of a Pd complex, has been observed. This point, however, is under further investigation. Interestingly, the zinc salts of (*Z*)-2-en-4-ynoic acids cannot be lactonized under the influence of ZnBr₂ either. However, addition of 3 M DCl in D₂O (1 mol equiv.) to the zinc salt of (*Z*)-2-nonen-4-ynoic acid induced a slow but smooth and quantitative lactonization with incorporation of D at the C4 position to the extent of >98%, indicating the intermediacy of the corresponding zinco derivative of 2*H*-pyran-2-one (Scheme 3).

At this point, factors affecting the pyranone/furanone ratio are not yet very clear. It is nevertheless tempting to speculate that polarization of the unsaturated bonds in (Z)-2-en-4-ynoic acids would favor the formation of 2H-pyran-2-ones via a Lewis acid-catalyzed polar process, whereas transition metal-catalyzed processes, in which bond polarization is less important, may stereoelectronically favor a 5-exo-mode cyclization (Scheme 4). Irrespective of the precise mechanisms of these cyclization reactions, however, the selective conversion of 1 into 2 and 3 catalyzed by ZnBr₂ and Ag₂CO₃, respectively, significantly complement a few related lactonization protocols developed over the past decade.

DCI (3 M in

. COOZnBi

Scheme 3.

Acknowledgements

We thank the National Institutes of Health (GM 36792), the National Science Foundation (CHE-0080795), and Purdue University for support of this research.

References

- (a) Ogawa, Y.; Maruno, M.; Wakamatsu, T. *Heterocycles* 1995, 41, 2587; (b) Ogawa, Y.; Maruno, M.; Wakamatsu, T. *Synlett* 1995, 871.
- (a) Bellina, F.; Biagetti, M.; Carpita, A.; Rossi, R. *Tetra*hedron 2001, 57, 2857; (b) Bellina, F.; Biagetti, M.; Carpita, A.; Rossi, R. *Tetrahedron Lett.* 2001, 42, 2859.
- For Pd-catalyzed cross-coupling with alkynylzinc derivatives, see: (a) King, A. O.; Okukado, N.; Negishi, E. J. Chem. Soc., Chem. Commun. 1977, 683; (b) King, A. O.; Negishi, E.; Villani, F. J., Jr.; Silveira, A., Jr. J. Org. Chem. 1978, 43, 358; (c) Negishi, E. In Aspects of Mechanism and Organometallic Chemistry; Brewster, J. H., Ed.; Plenum Press: New York, 1978; pp. 285–317; (d) Negishi, E.; Kotora, M.; Xu, C. J. Org. Chem. 1997, 62, 8957; (e) Anastasia, L.; Negishi, E. Org. Lett. 2001, 3, 3111.
- (a) Abarbri, M.; Parrain, J. L.; Duchene, A. *Tetrahedron Lett.* **1995**, *36*, 2469; (b) Abarbri, M.; Parrain, J. L.; Cintrat, J. C.; Duchene, A. *Synthesis* **1996**, 82.
- (a) For a synthesis of 2-en-4-ynoic acid esters by the Sonogashira alkynylation, see: Takeuchi, R.; Tanabe, K.; Tanaka, S. J. Org. Chem. 2000, 65, 1558; (b) For a synthesis by the Pd-catalyzed coupling of alkynylzincs with alkenyltellurium derivatives, see: Dabdoub, M. J.; Dabdoub, V. B.; Marino, J. P. Tetrahedron Lett. 2000, 41, 437.
- Lu, X. Y.; Huang, X. L.; Ma, S. M. Tetrahedron Lett. 1993, 34, 5963.
- (a) Kotora, M.; Negishi, E. *Tetrahedron Lett.* 1996, 37, 9041; (b) Kotora, M.; Negishi, E. I. *Synthesis* 1997, 121; (c) Negishi, E.; Kotora, M. *Tetrahedron* 1997, 53, 6707; (d) Negishi, E.; Xu, C.; Tan, Z.; Kotora, M. *Heterocycles* 1997, 46, 209; (e) Liu, F.; Negishi, E. J. Org. Chem. 1997, 62, 8591; (f) Negishi, E.; Alimardanov, A.; Xu, C. Org. Lett. 2000, 2, 65.
- (a) Lu, X. Y.; Chen, G. Y.; Xia, L. J.; Guo, G. Z. *Tetrahedron: Asymmetry* 1997, *8*, 3067; (b) Mori, H.; Kubo, H.; Hara, H.; Katsumura, S. *Tetrahedron Lett.* 1997, *38*, 5311.
- 9. (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467; (b) Takahashi, S.; Suzuki, Y.;

Sonogashira, K.; Hagihara, N. J. Chem. Soc., Chem. Commun. 1976, 839; (c) Tohda, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1977, 777; (d) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980, 627.

- 10. Xu, C.; Negishi, E. Tetrahedron Lett. 1999, 40, 431.
- 11. A representative procedure for the synthesis of 1 from the corresponding terminal alkyne is as follows: A solution of EtMgBr (1 M solution in THF, 2.1 mL) in 5 mL of THF was successively treated with ZnBr₂ (1 M solution in THF, 2.1 mL, freshly prepared from flame-dried ZnBr₂) and (Z)-3-iodo-2-propenoic acid (3.96 g, 2 mmol) in 2 mL of THF at 0°C under an Ar atmosphere. In a second flask a solution of a terminal alkyne (2 mmol) in 5 mL of THF was treated with *n*-BuLi (2.5 M solution in hexanes, 2.2 mL) at -78°C under an Ar atmosphere. After 10 min, the reaction mixture was treated with ZnBr₂ (1 M solution in THF, 2.2 mL), warmed to 0°C, transferred by cannula into the first flask, treated with $Pd(PPh_3)_4$ (115) mg, 0.1 mmol), and then warmed to 23°C. After 2-5 h the reaction mixture was diluted with Et₂O, washed with aqueous NH₄Cl and then with aqueous NaHCO₃, and treated with 1N NaOH. The aqueous layer was washed with hexanes, acidified with 1N HCl, extracted with Et₂O and dried over MgSO₄ to give the desired (Z)-2-en-4ynoic acid (1). No further purification was necessary.
- 12. A representative procedure for the metal-catalyzed lactonization of 1 to give 2 or 3 is as follows: To a solution of 1 (0.25 mmol) in 2–5 mL of solvent indicated in Tables 1–3 was added an appropriate metal salt (5–10 mol%) at 23°C. After the completion of the reaction indicated by TLC analysis, the reaction mixture was then filtered through a short path silica gel column and concentrated at reduced pressure. The products ratios and yields were determined by ¹H NMR spectroscopy and GC analyses using mesitylene as an internal standard. Chromatography on silica gel (95/5 hexane/EtOAc, v/v) allowed the separation of 2 and 3 and their isolation as pure substrates.
- For discrete but related transition metal-catalyzed syntheses of 2*H*-pyran-2-ones from internal alkynes and β-haloacrylic esters, see: (a) Larock, R. C.; Doty, M. J.; Han, X. J. J. Org. Chem. **1999**, 64, 8770; (b) Kotora, M.; Ishikawa, M.; Tsai, F. Y.; Takahashi, T. Tetrahedron **1999**, 55, 4969; (c) Hua, R.; Tanaka, H. New J. Chem. **2001**, 25, 74.
- For the synthesis of 2*H*-pyran-2-ones by the Pd-catalyzed reaction of allenylstannanes with (*Z*)-β-iodoacrylic acids, see: Rousset, S.; Abarbri, M.; Thibonnet, J.; Duchene, A.; Parrain, J. L. *Chem. Commun.* 2000, 1987.